Gas infrastructure needed to scale up renewable gas to 270 bcm by 2050, enabling a decarbonised and renewables-based energy system at lowest costs

Release date: March 18, 2018

  • Study published today finds that a smart combination of hydrogen and biomethane with electricity is the optimal way to decarbonise the energy system, with all energy ultimately becoming renewable.    
  • Using around 2900 TWh or approximately 270 billion cubic metres (natural gas equivalent) of green hydrogen and renewable methane through existing gas infrastructure across the EU saves society €217 billion annually by 2050 compared to an energy system using a minimal amount of gas.   
  • Substantial hydrogen, biomethane and power to methane production cost reductions are possible.

Today a study performed by Navigant for the Gas for Climate consortium was published. This study serves as a follow-up to our study published last year, including a greatly expanded scope and analysis.

While achieving 100% greenhouse gas reduction requires large quantities of renewable electricity, by far the most cost optimal role to decarbonise is by combining electricity with renewable gases such as hydrogen and biomethane. Renewable gas adds value in the heating of buildings, for high temperature industrial heat, providing flexibility in electricity production alongside wind and solar and in heavy transport.

Using around 2900 TWh or approximately 270 billion cubic meters of renewable methane and hydrogen in a smart combination with renewable electricity saves society €217 billion across the energy system compared to reducing gas to an absolute minimum. Existing gas infrastructure is indispensable in transporting this renewable and low carbon gas to the various demand sectors. Gas infrastructure can be used to transport both hydrogen and biomethane in 2050.

The Navigant experts foresee an initial important role for blue hydrogen (carbon-neutral hydrogen produced from natural gas with carbon capture and storage), to grow the developing hydrogen market including in new applications. Towards 2050, with increased levels of renewable electricity and falling costs, renewable green hydrogen will gradually replace blue hydrogen, achieving in the end a fully renewable energy system.

In a joint statement, the CEOs of the nine Gas for Climate members said:

The new Gas for Climate study shows that gas and its infrastructure will play an indispensable role in the future decarbonised energy system together with electricity infrastructures. We support the transition to a fully renewable energy system in which biomethane and green hydrogen will play a major role in a smart combination with renewable electricity while recognising that blue hydrogen can accelerate decarbonisation efforts in the coming decades.

Download the Gas for Climate 2019 study here

News

Search
  1. Sequential cropping is the cultivation of a second crop before or after the harvest of main food or feed crop on the same agricultural land during an otherwise fallow period. Sequential cropping does not impact existing food or feed markets as no existing food or feed is used for biogas.
  2. The deployment of energy crops should be prioritised on abandoned and degraded land.
  3. Municipal solid waste is first pre-processed into refuse derived fuel (RDF). Non-combustible materials such as glass and metals are removed from the waste, leaving biogenic material and plastics.
  4. Gas for Climate (2021), The future role of biomethane (Link)
  5. Dutch TTF natural gas price (Link)
  6. Gas for Climate (2021), The future role of biomethane (Link)
  7. EBA (2021), Gasification – A Sustainable Technology for Circular Economies (Link)
  8. Gas for Climate (2021), The future role of biomethane (Link)
  9. Biomethane replaces mainly natural gas, with a lifecycle emission of about 75 g CO2eq/MJ, and partially diesel (and other fuels) with a lifecycle emission of 95 g CO2eq/MJ or above.
  10. 350 TWh on basis of gross calorific value equals 315 TWh on basis of net calorific value, or 1,134 PJ. The 100 g CO2eq/MJ emission reduction is expressed on basis of Lower Heating Value (=net calorific value). 1,134 PJ * 97 g/MJ = 113 Mtonne CO2eq emissions avoided.
  11. IEA Bioenergy (2020): Production of food grade sustainable CO2 from a large biogas facility (Link)
  12. Based on current EU average salaries in this sector
  13. Gas for Climate (2022) Biomethane production potentials in the EU (Link)
  14. Gas for Climate (2022) Biomethane production potentials in the EU (Link)
  15. European Commission (2018). In-depth analysis in support of the Commission Communication COM (2018) 773. A Clean Planet for all. A European long-term strategic vision for a prosperous, modern, competitive and climate neutral economy.
  16. Eurostat (2022) Natural gas supply statistics (Link)
  17. Gas for Climate (2022) Biomethane production potentials in the EU (Link)
  18. European Commission (2022), Commission Staff Working Document, SWD(2022) 230 final, Implementing the REPowerEU Action Plan: Investment needs, hydrogen accelerator, and achieving the bio-methane targets (Link)
  1. Eurostat (2020), Final energy consumption by sector, EU, 2020 (Link)
  2. Feedstocks refer to raw materials fed into a process for conversion into another product
  3. The Guardian (2021), Why it’s so hard to electrify shipping and aviation (Link)
  4. Commission (2020), Energy efficiency in buildings (Link)
  5. Eurostat (2020), Final energy consumption in the residential sector by use (Link)
  6. Gas for Climate (2019), The optimal role for gas in a net-zero emissions energy system (Link)
  7. DG ENER (2018) Request for services n° ENER/B2/2018-260 – Potentials of sector coupling for the EU natural gas sector – Assessing regulatory barriers.
  8. Sector coupling: how can it be enhanced in the EU to foster grid stability and decarbonise? (Link)
  9. European Commission (2020). A hydrogen strategy for a climate-neutral Europe (Link)
  10. European Commission (2022). Commission Staff Working Document, SWD (2022) 230 final, Implementing the REPowerEU Action Plan: Investment needs, hydrogen accelerator, and achieving the bio-methane targets (Link)
  11. Gas for Climate recently assesses the options the facilitate the 10 Mt import target by 2030. Gas for Climate (2022), Facilitating hydrogen imports from non-EU countries (Link)
  12. Gas for Climate (2022) Assessing the benefits of a pan-European hydrogen transmission system (Link)
  13. Gas for Climate (2023). Assessing the benefits of a pan-European hydrogen transmission infrastructure (Link)
  14. Guidehouse (2020) European Hydrogen Backbone (Link)
  15. Gas for Climate (2023). Assessing the benefits of a pan-European hydrogen transmission infrastructure (Link)
  16. Recharge (2022). ‘From niche to scale’ | EU launches €3bn European Hydrogen Bank with a bang but keeps quiet about the details (accessed in September 2022). (Link)
  17. Gas for Climate (2023). Assessing the benefits of a pan-European hydrogen transmission infrastructure (Link)
  18. Gas Infrastructure Europe (2021). Picturing the value of underground gas storage to the European hydrogen system (Link)
  19. Guidehouse (2020) European Hydrogen Backbone (Link)
  1. European Commission (2022). Commission Staff Working Document, SWD (2022) 230 final, Implementing the REPowerEU Action Plan: Investment needs, hydrogen accelerator, and achieving the bio-methane targets (Link)
  2. Gas for Climate recently assesses the options the facilitate the 10 Mt import target by 2030. Gas for Climate (2022), Facilitating hydrogen imports from non-EU countries (Link)
  3. Gas for Climate (2019). The optimal role for gas in a net-zero emissions energy system (Link)
  4. EHB (2021) Analysing future demand, supply, and transport of hydrogen. (Link)
  5. Gas for Climate (2019). The optimal role for gas in a net-zero emissions energy system (Link)
  6. Gas for Climate (2019). Job creation by scaling up renewable gas in Europe. (Link)
  7. This is without accounting for additional measures such as energy efficiency and overall demand reduction.
  8. As the natural gas consumption is supposed to significantly decline by 2050, most of natural gas imports could be replaced by domestically produced biomethane.
  9. Part of the 666 TWh could be supplied by blue hydrogen, i.e. by applying carbon capture and storage technologies on hydrogen production from natural gas. Blue hydrogen could help to accelerate market and infrastructure development as a complementary measure to green hydrogen. However, blue hydrogen would not help with reducing natural gas import dependency of the EU
  10. EHB (2021) Analysing future demand, supply, and transport of hydrogen. (Link)
  11. Gas for Climate (2022) Biomethane production potentials in the EU. (Link)
    Gas for Climate (2023). Assessing the benefits of a pan-European hydrogen transmission network (Link)
  12. Gas for Climate (2023). Assessing the benefits of a pan-European hydrogen transmission network (Link)
  13. Gas for Climate (2022) Facilitating hydrogen imports from non-EU countries. (Link)
  14. Gas for Climate (2023). Assessing the benefits of a pan-European hydrogen transmission network (Link)
  15. Gas for Climate (2023). Assessing the benefits of a pan-European hydrogen transmission network (Link)
  16. Gas for Climate (2023). Assessing the benefits of a pan-European hydrogen transmission network (Link)

End-use decarbonization and energy system integration

Renewable gas can be massively scaled up by 2050. Biomethane should be allocated based on the highest societal value. Hydrogen will be used in hard-to-decarbonise sectors – in industry as feedstock and for high-temperature heating, in the building sector, in power system balancing on long-time scales (e.g. hydrogen peaking plants), and in mobility applications, either as hydrogen or hydrogen-based synthetic fuel (aviation, maritime, heavy-trucking). Hydrogen is a prime candidate to facilitate sector coupling and fits well into the efforts for increased electrification by providing long-term storage and possibly also dispatchable power generation.

Energy security of supply

A substantial part of the current gas imports from Russia (155 bcm in 2021) can be replaced by domestic biomethane production (35 bcm) and renewable hydrogen production and import (50 bcm) by 2030. At the European level, supply potential is sufficient to meet the demand for renewable gases at all time scales (2030, 2040, and 2050), subject to acceleration of Renewable Energy Sources (RES) build-out beyond current targets. Individual regions might experience an abundance or lack of sufficient renewable energy and accelerated development of the European Hydrogen Backbone will help reconcile these differences can help to reconcile these differences.

Climate action and meeting climate goals

Gas for Climate fully supports the Fit for 55 package, aimed at a 55% reduction in European emissions by 2030 and the accelerated goals under REPowerEU. Gas for Climate also promotes a target 35 bcm of biomethane and 20 Mt of hydrogen in the European Union by 2030. Scaling up of renewable hydrogen (deployment of electrolysis) and biomethane (driven in large by sequential cropping) production is possible. Renewable gases are the solution in removing barriers to decarbonisation and creating the conditions for a more cost-effective transition. Policymakers are to adapt the European Union’s regulatory framework so that the production of renewable and low-carbon gases is incentivised, and gas infrastructure can fully unleash its great potential in a future integrated energy system.